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Estimating the Rate of Gene Conversion on Human Chromosome 21
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There is a growing recognition that gene conversion can be an important factor in shaping fine-scale patterns of
linkage disequilibrium in the human genome. We devised simple multilocus summary statistics for estimating gene-
conversion rates from genomewide polymorphism data sets. In addition to being computationally feasible for very
large data sets, these summaries were designed to yield robust estimates of gene-conversion rates in the presence
of variation in crossing-over rates. Using our summaries, we analyzed 21,840 biallelic single-nucleotide polymor-
phisms (SNPs) on human chromosome 21. Our results indicate that models including both crossing over and gene
conversion fit the overall short-range data (0–5 kb) of chromosome 21 much better than do models including
crossing over alone. The estimated ratio of gene-conversion rate to crossing-over rate has a range of 1.6–9.4,
depending on the assumed conversion tract length (in the range of 500–50 bp). Removal of the 5,696 SNPs that
occur in known mutational hotspots (CpG sites) did not significantly change our conclusions, suggesting that
recurrent mutations alone cannot explain our data.

Introduction

Linkage disequilibrium (LD) refers to the nonrandom
association between alleles at different loci, at a popula-
tion level. With the availability of genomewide poly-
morphism data, LD has gained great theoretical and
practical importance in the area of human genetics. Un-
derstanding the patterns of LD across the genome is
crucial for both fine-scale mapping of disease genes and
for making inferences about human population history.
Such patterns are influenced by numerous forces. These
include forces that affect the whole genome (e.g., popula-
tion growth) as well as forces that affect individual loci
(e.g., natural selection). In particular, genetic exchange
mechanisms play a key role in shaping the LD patterns
within a population. New alleles that arise by mutation
are in strong association with alleles at the surrounding
loci. These associations get broken down when alleles are
shuffled between chromosomes at the time of meiosis.
Thus, LD between any two alleles decays with time.

Current meiotic modes allow for two different mech-
anisms of allelic exchange. Central to many biological
models that describe these mechanisms is a structure
called the “Holliday junction” (Holliday 1964). “Hol-
liday junction” refers to a four-way DNA intermediate
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that arises when homologous chromosomes overlap for
strand exchange. Resolution of these intermediates re-
sults in the transfer of short stretches of DNA between
chromosomes. However, this process is not always ac-
companied by the reciprocal exchange of larger chro-
mosomal segments (Carpenter 1984). We use “crossing
over” to denote the reciprocal exchange of large chro-
mosomal fragments, “gene conversion” to denote short
exchanges between chromosomes that are not accom-
panied by crossing over, and “recombination” to denote
both gene conversion and crossing over. We refer to the
stretch of DNA transferred during a gene-conversion
event as a “conversion tract.”

Although both crossing over and gene conversion re-
duce the levels of LD over time, the effects are qualita-
tively different. The rate of decay of LD by crossing over
increases as the distance between the markers increases.
In contrast, the rate of decay of LD by gene conversion
is independent of the marker spacing for distances greater
than the length of a conversion tract (Andolfatto and
Nordborg 1998; Wiehe et al. 2000). Thus, whereas
crossing over is the major determinant of LD for distant
sites, the added effects of gene conversion cannot be
ignored for closely linked sites (Andolfatto and Nord-
borg 1998).

Short-range patterns of LD can lead to spurious in-
ferences about population history and effective popula-
tion size when gene conversion is not taken into account.
Gene conversion can also have significant implications
in disease mapping and association studies. A wide var-
iation in the rate of conversion across the genome would
create distortions in an LD map based on crossing over
alone and, in turn, would adversely affect results from
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Figure 1 A likelihood surface of chromosome 21 data that is based on the fraction of short-range (0–5 kb) incompatible SNP pairs alone.
r denotes the crossing-over rate, g denotes the gene-conversion rate, and is the product of the likelihood and an arbitrary constant. NoteL(r,g)
that estimates of gene conversion decrease rapidly with increasing crossing-over rates and eventually reach zero. A single pairwise summary
cannot distinguish between the effects of gene conversion and those of crossing over.

whole-genome association studies (Clark et al. 2003).
Since the decay of LD by gene conversion becomes in-
dependent of distance as the marker spacing increases,
high conversion rates will make LD much less informa-
tive for mapping purposes.

Population genetic models that incorporate both gene
conversion and crossing over in the coalescent have re-
cently been developed (Wiuf and Hein 2000). Many
recent studies have also indicated that gene conversion
may be frequent in the human genome. Ardlie et al.
(2001) determined SNP genotypes in 68 STSs and found
much less LD among SNPs within very short physical
distances than expected on the basis of population ge-
netics theory. They concluded that gene conversion was
the most likely explanation for this observation. Frisse
et al. (2001) applied a generalization of an estimation
method developed by Hudson (2001) to data from a 20-
kb region in the genome and found that the estimated
ratio of gene-conversion to crossing-over rates is 7.3 for
a mean tract length of 500 bp. Analysis of several ge-
nomic regions in humans further supports the idea that
local LD is less than expected and that the discrepancy
can be easily explained by gene conversion (Przeworski
and Wall 2001).

In this article, we present simple summary statistics
to estimate gene-conversion rates from population ge-
netic data (SNPs) and to distinguish evolutionary sce-
narios including gene conversion from those including
crossing over alone. Our analysis was focused on gene
conversion rather than crossing over, and our summary
statistics were designed to separate the effects of the

former from those of the latter, as far as possible. Using
coalescent simulations, we first evaluated the perfor-
mance of our method under the standard model of gene
conversion, as well as under some nonstandard models.
We found that our method works better than compa-
rable existing methods for estimating the conversion rate
(whereas the opposite was true for the rate of crossing
over), and the estimates seemed to be robust to variation
in the crossing-over rates. We then applied our sum-
maries to 21,840 biallelic SNPs from 20 independent
copies of human chromosome 21 (data set of Patil et
al. [2001] that was also used by Innan et al. [2003]; see
also the National Center for Biotechnology Information
[NCBI] Web site) and estimated the average rate of gene
conversion in the data. Finally, we examined the fit of
the overall data to some simple population genetic mod-
els without conversion and checked for multiple “hits”
in CpG sites. Our results suggest that gene-conversion
events make a major contribution to the decay of short-
range LD in chromosome 21.

Material and Methods

Models and Simulations

Coalescent theory provides an efficient framework
for simulating population genetic data (Kingman 1982;
Nordborg 2001). We simulated data under the coales-
cent, assuming no population structure, a large constant
population size (N), no selection, and the infinite-sites
model for mutations (i.e., every mutation affects a unique
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site). All of our simulations involved 200-kb DNA se-
quences (a region large enough to encompass the phe-
nomenon of interest yet small enough for computational
feasibility), a sample size of (to match the data;n p 18
see below), and a uniform population mutation rate

(estimates from Innan et al. [2003]).v p 4Nu p 140
Here, u denotes the per-generation probability of a mu-
tation event per sequence. Only the nonsingleton SNPs
(i.e., SNPs with minor allele count 11) in any simulated
data set were used for further analysis.

We considered models with both uniform and non-
uniform crossing over along the sequence. For modeling
nonuniform crossing over, we assumed that there are 1-
kb regions with elevated crossing-over rates (i.e., hot-
spots) once every 40 kb, on average. A significant per-
centage (x) of all crossing-over events happen within these
hotspots, whereas the rest of the events happen in the
intervening regions. Crossing over within hotspots as well
as within nonhotspot regions is assumed to be uniform.
All hotspots have identical (higher) levels of crossing over.
Similarly, all nonhotspot regions also have identical
(lower) levels of crossing over.

For modeling gene conversion, we used the coalescent
with both crossing over and gene conversion, as described
by Wiuf and Hein (2000). Gene-conversion tracts are
assumed to be geometrically distributed, with a mean
length L, whereas the population crossing-over rate r

(i.e., ) and population gene-conversion rate g (i.e.,4Nr
) are uniform along the sequence. Here, r denotes the4Nc

per-generation, per-sequence probability of a crossing-
over event, and c denotes the per-generation, per-se-
quence probability of a gene-conversion event. Note that
this model is equivalent to the assumption that events
occur with a total rate of and that each eventr � g

results in crossing over with probability and inr/(r � g)
gene conversion otherwise. The ratio of the rate of gene
conversion to the rate of crossing over (i.e., or )g/r c/r
is denoted by f. In addition to this standard model of
gene conversion, we simulated data under an alternate
model in which crossing over is nonuniform and gene
conversion is uniform (program available at the Nord-
borg Lab Web site). The model of nonuniform crossing
over here assumes that 50% of all crossing-over events
occur in hotspots that are 1 kb in length (Wall and Prit-
chard 2003).

We also simulated data with population structure and
population growth. Population structure is simulated us-
ing a symmetric two-island model with equal migration
rates ( ) between the two subpopulations, where m4N mo

denotes the per-generation, per-sequence probability of
a migration event and No is the size of a subpopulation.
The two subpopulations are also assumed to be equal
in size and to have identical mutation (u) and recom-
bination (r) rates. For simulation of population growth,
the ancestral population size is assumed to have been

constant until t generations ago, after which it grew ex-
ponentially to the current population size. Time is scaled
nonlinearly during the exponential growth phase. Both
the structure and growth models are described in detail
by Nordborg (2001).

Rejection Method

A simple rejection scheme is used to estimate param-
eters such as the population crossing-over rate (r), popu-
lation gene-conversion rate (g), etc. Under this scheme,
we simulated data sets for different parameter values and
computed summary statistics. We then accepted a data
set if all of its summaries were within 20% of the ob-
served values. Otherwise, we rejected it. The likelihood
of a set of parameter values was approximated as the
fraction of data sets that were accepted for that set (for
details about rejection methods, see Weiss and von Hae-
seler [1998] and Marjoram et al. [2003]).

Summary Statistics

We now describe the summary statistics used in our
analysis. A pair of SNPs is called “incompatible” if all
four possible haplotypes are observed in the sample and
called “compatible” otherwise. Under the infinite-sites
model for mutations, incompatibility is evidence for at
least one crossing-over or gene-conversion event between
the two loci (Hudson and Kaplan 1985).

Consider three SNPs A, B, and C, ordered from left
to right. SNPs are defined to be in pattern a if: A and
B are incompatible, B and C are incompatible, and A
and C are compatible.

Now consider four SNPs A, B, C, and D, ordered from
left to right. SNPs are defined to be in pattern b if: A and
D are incompatible and B and C are incompatible.

Let and denote the fraction of all triplets andp(a) p(b)
quadruplets with the outer SNPs within 5 kb that show
patterns a and b, respectively. We used andp(a) p(b)
jointly to estimate the gene-conversion rate. Thus, under
our rejection method, we accepted a data set if both

and were within 20% of the observed values.p(a) p(b)
Note that patterns a and b reflect the potential effects
of a single gene-conversion and crossing-over event. Pat-
terns of type a can arise from a single gene-conversion
event affecting the middle SNP in a triplet. Similarly,
patterns of type b can result from a single crossing-over
event between the inner SNPs in a quadruplet.

The Chromosome 21 Data

We analyzed the chromosome 21 data of Patil et al.
(2001), who identified 35,989 SNPs in a 33-Mb region
in the q arm of this chromosome, after masking 33%
of the sequence as repeats. The SNPs were obtained by
resequencing 20 independent copies of the chromosome
from a worldwide sample. For the current study, we used
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Figure 2 Expected values of p(a) and p(b), from simulations
under models with uniform crossing over alone ( ) and uniformg p 0
gene conversion alone ( ) at differing rates. Expectations werer p 0
calculated from 1,000 simulations of 200-kb sequences, with v p

. For models with gene conversion alone, the mean conversion-140
tract length was fixed at bp.L p 500

21,840 biallelic nonsingleton SNPs from a 28-Mb region
on the largest contig, NT_002836 (NCBI). A singleton
SNP can never form an incompatible pair, so singletons
are excluded in our analysis. This data set contains a
large amount of missing data. On average, data from 3.9
chromosomes are missing per SNP site.

To avoid biases of sample size due to missing data,
we consider a pair of SNPs as compatible or incompat-
ible on the basis of a random sample of 18 chromosomes
alone. This random sample should satisfy the following
two conditions: (1) there is no missing data at either SNP
site and (2) there are nonsingleton SNPs at either SNP
location.

To calculate and , we chose only those tripletsp(a) p(b)
and quadruplets in which we can find such a random
sample for all the pairs of interest. The sample size of
18 was chosen to give a large enough number of triplets
and quadruplets in the short range. All in all, we used
191,189 triplets and 787,264 quadruplets to calculate

and .p(a) p(b)

Results

Choice of Summary Statistics

A serious difficulty in estimating the gene-conversion
rate is distinguishing between gene conversion and
crossing over. A single summary statistic cannot effi-
ciently distinguish models with both crossing over and
gene conversion from models with higher crossing over
alone. Furthermore, patterns based on pairs of sites
alone are not effective in teasing apart the effects of gene
conversion and crossing over (example in fig. 1). For
that reason, we have chosen a combination of summaries
based on triplets and quadruplets of loci.

Both crossing over and gene conversion increase p(a)
and . However, the joint distribution of andp(b) p(a)

in the presence of gene conversion alone is differentp(b)
from the distribution with crossing over alone (see fig.
2).

Accuracy of Estimation

Many different methods for estimation of crossing-
over rates from population genetic data are currently
available (e.g., Kuhner et al. 2000; Nielsen 2000; Hud-
son 2001). Our primary goal is to estimate gene con-
version rather than crossing over. In this section, we
evaluate the performance of our summaries, under the
standard model of gene conversion, and compare it with
the composite likelihood method of Hudson (used by
Frisse et al. [2001]). We also test our method under some
nonstandard models and show that our summaries pro-
vide robust estimates of the gene-conversion rate.

We first simulated 1,000 data sets each for different
combinations of crossing-over and gene-conversion rates,

under the standard model of gene conversion (i.e., with
uniform crossing over and gene conversion and with
geometrically distributed tract length). The mean con-
version tract length (L) was fixed at 500 bp. For each
simulated data set, we calculated p(a) and p(b) and es-
timated gene-conversion and crossing-over rates using
the rejection method. Under this method, we simulated
8,000 data sets each, under the same model, for a grid
of r and g values and determined(0 � 160) (0 � 400)
the approximate maximum-likelihood estimate (MLE)
of gene conversion ( ) and crossing over ( ) for all theˆ ˆg r

1,000 data sets. Table 1A shows the results of estimates
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Table 1

Performance of andp(a) p(b)

A. DATA SIMULATED WITH UNIFORM CROSSING OVER AND

UNIFORM CONVERSION OF g AND r

Rate

aˆE(g) bg(g) cB(g) aˆE(r) bg(r) cB(r)r g

20 40 48.45 .57 .50 26.33 .61 .52
40 40 45.53 .52 .55 49.06 .70 .48
60 40 42.83 .44 .58 72.08 .74 .45
30 20 27.08 .43 .55 36.07 .62 .50
30 40 45.98 .52 .54 38.44 .57 .48
30 60 67.49 .62 .49 37.50 .55 .50

B. DATA SIMULATED WITH NONUNIFORM CROSSING OVER

AND UNIFORM CONVERSION OF g AND r

Rate

aˆE(g) bg(g) cB(g) aˆE(r) bg(r) cB(r)r g

20 40 46.31 .58 .52 28.16 .63 .47
40 40 43.66 .51 .58 48.33 .67 .51
60 40 43.17 .47 .57 64.51 .77 .52
30 20 25.96 .36 .61 37.70 .58 .46
30 40 47.41 .49 .52 36.83 .54 .52
30 60 67.14 .54 .54 35.98 .49 .53

a and denote the averages of the MLEs of geneˆ ˆE(g) E(r)
conversion ( ) and crossing over ( ) rates for the 1,000 dataˆ ˆg r

sets simulated at the corresponding crossing-over (r) and gene-
conversion (g) rate.

b and denote the fraction of times and for aˆ ˆg(g) g(r) g r

simulated data set is within a factor of 2 of the true g and r,
respectively (Wall 2000).

c and denote the fraction of times and are lessˆ ˆB(g) B(r) g r

than their true values, given that they are not equal to their
true values.

obtained for our simulated data sets. We find that the
accuracy of our estimates of gene conversion (i.e., the
fraction of times for a simulated data set is within aĝ

factor of 2 of the true g value) generally decreases as
the relative amount of crossing over increases, and vice
versa. The method seems to be slightly biased toward
underestimating the gene-conversion rate. The distribu-
tion of is highly skewed (fig. 3A). The expected valueĝ

is higher than the true one, although we underestimate
more often than we overestimate.

We then considered the effects of departures from the
standard modeling assumptions. Many assumptions
made by the standard model of gene conversion are not
accurate. For example, a model with uniform crossing
over is not realistic. There is evidence that crossing-over
rates vary substantially across the human genome at all
scales (Fullerton et al. 1994; Dunham et al. 1999; Innan
et al. 2003). Hotspots of crossing over are also known
to exist in certain regions of the genome (see, e.g., Jef-
freys et al. [2001]). To investigate whether crossing-over
hotspots affect the accuracy of our estimates, we simu-
lated data sets under an alternate model of gene conver-

sion, with nonuniform crossing over and uniform gene
conversion for the same set of parameter values as be-
fore. We then estimated and under the standardˆ ˆg r

model of gene conversion for these data sets, as before.
Table 1B shows the results obtained for these data sets.
We found that values of in table 1B are similar tog(g)
those in table 1A. Thus, the presence of crossing-over
hotspots does not decrease the accuracy of our gene-
conversion estimates. The distribution of for this sce-ĝ

nario is shown in figure 3B. In figure 3A and 3B, we
see that a significant fraction of estimates are zeroes.
This may be due to the relatively small value of g (40).
The data simulated with gene conversion shows enor-
mous deviation from the median values of andp(a)

, which can lead to both overestimates and under-p(b)
estimates. However, whereas overestimates can be ar-
bitrarily high, underestimates are bounded by zero. After
a certain extent, any further deviation from the median
values in a direction of underestimates—for example,
lower and higher —results only in andp(a) p(b) g p 0
not lower than that. Thus, deviations to zero and beyond
zero both add up at .g p 0

To compare our method with that used by Frisse at
al. (2001), we simulated 500 data sets of 200-kb se-
quences, under both the standard and alternate model of
gene conversion for the same parameter values as shown
in table 1A and 1B. We then estimated gene conversion
and crossing over in these data sets, using the program
maxhap, which uses a generalization of Hudson’s com-
posite pairwise likelihood method. For this estimation,
r per base pair was set in the range of 0.00005–0.0008,
with a starting value of 0.0002, whereas f was set in the
range of 0–15, with intervals of 0.5. The mean conver-
sion tract length L was fixed at 500 bp. Table 2A and
2B show the results of estimates obtained using Hud-
son’s method. We found that the accuracy of gene-con-
version estimates based on our method was roughly two-
fold higher than the composite likelihood approach,
although Hudson’s method gave better estimates of the
crossing-over rate. Estimates of g based on maxhap are
also more likely to be underestimates than overestimates,
for these set of parameters.

Another unrealistic assumption in the standard model
of gene conversion is the absence of population structure.
Population structure is a well-documented phenomenon
in human populations (e.g., Cavalli-Sforza et al. 1994).
The observed levels of LD will be higher in samples
drawn from structured populations, as compared with
samples drawn from a panmictic population. This is be-
cause haplotypes from different subpopulations will not
have as much chance to recombine as will those under
panmixia. Our concern here was that population struc-
ture might create effects similar to gene conversion on
the joint distribution of our summaries. To check if pop-
ulation subdivision alone can inflate our estimates of g,
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Figure 3 The distribution of MLEs of gene conversion ( ) for 1,000 data sets, each simulated at uniform crossing-over rate andĝ r p 40
uniform gene conversion rate (A) and at nonuniform crossing over and uniform gene conversion rate (B).g p 40 r p 40 g p 40

we simulated 800 data sets, each under the symmetric
two-island model with no gene conversion for various
crossing-over and migration rates. We also simulated
data sets for the same crossing-over rates without popu-
lation structure. We then calculated the MLEs of the
gene-conversion rate for both scenarios, under the stan-
dard model of gene conversion, as before, and compared
the results (table 3). As can be seen from table 3, esti-
mates of gene conversion for data simulated under popu-
lation structure are not substantially higher than esti-
mates obtained for a panmictic population. In other

words, there is no indication that presence of population
structure alone mimics the effects of gene conversion on
our statistics.

Although population structure does not inflate our
estimates of gene conversion, we see that E[ ] is con-ĝ

siderably larger than zero in table 3. This shows that our
summaries are not completely effective in distinguishing
gene conversion from crossing over alone in data sets of
our size (200 kb). It is fortunate that the chromosome
21 data set that we plan to analyze is much larger (28
Mb) than the data sets we used in our simulations. Since
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Table 2

Performance of Hudson’s Pairwise Composite Likelihood
Method

A. DATA SIMULATED WITH UNIFORM CROSSING OVER AND

UNIFORM CONVERSION

Rate

aˆE(g) bg(g) cB(g) aˆE(r) bg(r) cB(r)r g

20 40 38.02 .25 .64 20.78 .80 .55
40 40 33.82 .21 .71 44.22 .84 .49
60 40 42.10 .21 .68 64.10 .85 .48
30 20 29.82 .13 .66 31.84 .82 .53
30 40 38.08 .25 .67 31.63 .84 .51
30 60 44.82 .28 .72 33.07 .81 .49

B. DATA SIMULATED WITH NONUNIFORM CROSSING OVER

AND UNIFORM CONVERSION

Rate

aˆE(g) bg(g) cB(g) aˆE(r) bg(r) cB(r)r g

20 40 29.01 .26 .73 21.05 .81 .54
40 40 23.06 .14 .81 40.71 .83 .56
60 40 18.43 .17 .85 58.60 .90 .58
30 20 14.95 .12 .78 29.17 .83 .59
30 40 22.55 .21 .80 30.85 .82 .54
30 60 36.45 .28 .77 30.94 .83 .55

a and denote the averages of the MLEs of gene-ˆ ˆE(g) E(r)
conversion ( ) and crossing-over ( ) rates for the 500 data setsˆ ˆg r

simulated at the corresponding crossing-over (r) and gene-con-
version (g) rate.

b and denote the fraction of times and for aˆ ˆg(g) g(r) g r

simulated data set is within a factor of 2 of the true g and r,
respectively (Wall 2000).

c and denote the fraction of times and are lessˆ ˆB(g) B(r) g r

than their true values.

Table 3

Estimates of Gene Conversion with
Population Structure and Crossing
Over Alone

ra and b4N mo Pc dˆE(g)

40:
1 .850 6.28
10 .839 6.58
20 .856 6.19
50 .873 5.83
100 .866 5.79
Panmictic-inf .880 5.32

60:
1 .805 8.79
10 .816 8.18
20 .817 8.25
50 .821 9.22
100 .808 8.73
Panmictic-inf .828 8.81

80:
1 .761 12.35
10 .758 11.19
20 .775 11.26
50 .772 11.41
100 .766 11.85
Panmictic-inf .773 11.53

a r ( ) denotes the population4Nr
crossing-over rate based on the total
population size (N).

b is the population-migration4N mo

rate, where m is the probability of mi-
gration per generation per sequence and
No is the size of subpopulations.

c P denotes the fraction of the 800
simulated data sets for which the MLE
of gene-conversion rate ( ) is �10.ĝ

d denotes the average of the MLEˆE(g)
of gene conversion ( ) for the 800 dataĝ

sets simulated at a particular crossing-
over rate (r) and population model.

the values of our summaries in this data set are ap-
proximately equivalent to an average of many indepen-
dent sequences, our ability to distinguish gene conversion
from crossing over is expected to be much higher. The
accuracy of our estimates will also be higher for such
large data sets. Therefore, we are convinced that our
summaries will provide good estimates of the gene-con-
version rate for the chromosome 21 SNPs.

Analysis of Chromosome 21 Data

The Average Gene-Conversion Rate in Chromosome 21

The observed values of p(a) and p(b) for this data set
are 0.00463 and 0.0105, respectively. Both gene-con-
version (g) and crossing-over (r) rates for chromosome
21 were estimated, under the standard model of gene
conversion. Rather than estimating the mean length of
a conversion tract, we used the rejection method to ob-
tain the MLEs of gene-conversion rate for two illustra-
tive values of the tract length, bp andL p 500 L p 50
bp. We also generated likelihood surfaces of r and g for
these tract lengths (figs. 4 and 5).

The MLEs for bp are andˆ ˆL p 500 r p .00040 g p

per base pair ( ), whereas, for.000625 f p 1.6 L p 50
bp, they are and per bpˆ ˆr p .00040 g p .00375 (f p

. Under the assumption that the prior distribution9.4)
is uniform, our likelihood surfaces represent the poste-
rior distribution of r and g. We used these likelihoods
to compute ∼95% credible intervals for g. For L p

bp, a 95% credible interval of g per base pair is500
0.00020–0.00175, whereas, for bp, this intervalL p 50
is 0.00125–0.00750.

A highly desirable feature of these surfaces is that the
estimates of gene conversion seem to be independent of
the crossing-over rates (in contrast to fig. 1). Thus, our
method is robust to errors in the estimates of crossing-
over rates. Note that the estimated conversion rate al-
ways depends on the assumed conversion tract length.
As the length of the conversion tract decreases, the es-
timated rate of gene conversion increases. This is because
smaller tracts have a lower chance of including an SNP
than do longer tracts; therefore, we need such conversion
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Figure 4 The likelihood surface of chromosome 21 data based on and , for a mean tract length bp. Likelihoods werep(a) p(b) L p 500
calculated from 8,000 simulations of 200-kb sequences for different rates of crossing over ( ) and gene conversion ( ).r p 0–160 g p 0–300

roduct of the likelihood and an arbitrary constant. The peak is seen at and .L(r,g) r p 80 g p 125

events to happen more often. Since the effects of high
gene-conversion rates with small tracts will be similar
to the effects of lower conversion rates with longer tracts
(particularly in a range where tracts are short and mostly
affect only a single marker or less), it is hard to estimate
both these parameters independently from LD data.

Spatial Variation in Gene-Conversion and
Crossing-Over Rates

We looked at the spatial variation in and by com-ˆ ˆr g

puting these parameters for large overlapping 2-Mb win-
dows along chromosome 21. Correlation calculation
shows that our estimates of gene conversion and crossing
over are not significantly correlated ( ;R p 0.07575

). We also constructed ∼95% credible intervalsP p .7073
for these estimates (fig. 6A and 6B). For most windows,
the chromosomal average of falls well within the 95%ĝ

credible intervals. However, the region between 12 and
14 Mb appears to have a gene-conversion rate that is
substantially higher than the chromosomal average.

Can We Reject Models with No Gene Conversion?

To check if we can reject models without gene con-
version, we compared the observed for our data withĝ

a distribution of values of obtained for large data setsĝ

simulated under different models of crossing over alone.
We first simulated 500 data sets of five independent 200-
kb sequences, under models of both uniform and non-
uniform crossing over for differing rates, and we calcu-
lated the average and . On the basis of thesep(a) p(b)
summaries, we determined the , under the standardĝ

model of gene conversion, for all our simulated data sets
using the rejection method. The mean tract length was
fixed at 500 bp, and we estimated in the same way asĝ

we did for the chromosome 21 SNPs. We then calculated

the fraction of data sets (Z) for which is at least asĝ

high as the value we observed in chromosome 21.ĝ

The human population is known to have experienced
dramatic growth during recent times. To investigate the
effects of a changing population size, we also simulated
similar data sets (i.e., 500 data sets of five independent
200-kb sequences) with uniform crossing over alone and
with different scenarios of population growth. The model
of population growth assumes exponential growth from
an ancestral population size of to a current popu-410
lation size of . The different scenarios make dif-96 # 10
ferent assumptions about the time (t) at which this
growth started. We then calculated (under the standardĝ

model of gene conversion for a mean tract length of 500
bp) for data simulated under growth and determined Z.

In all these large data sets simulated with crossing over
alone, we almost never observed a value of that wasĝ

as high as the value observed for the chromosome 21 data
(maximum observed ). Therefore, we rejectZ p 0.004
the null hypothesis of no gene conversion for our data.
However, we caution here that a realistic model of
crossing over might be very different from the models
that we have considered here. For example, very little is
known about the length, density, and overall distribution
of recombination hotspots in the human genome. It is
possible that there exist alternative models of nonuni-
form crossing over that might fit this data set better (e.g.,
regional variation in crossing over combined with hot-
spots or some alternate distribution of crossing-over
hotspots).

Effect of Recurrent Mutation

Recurrent mutations can inflate the apparent level of
recombination observed in the data. More importantly,
they can mimic the patterns produced by gene-conver-
sion events by disrupting short-range LD. Therefore, if



394 Am. J. Hum. Genet. 75:386–397, 2004

Figure 5 The likelihood surface of chromosome 21 data based on and , for a mean tract length bp. Likelihoods werep(a) p(b) L p 50
calculated from 2,500 simulations of 200-kb sequences for different rates of crossing over ( ) and gene conversion ( ).r p 0–160 g p 0–1,500

denotes the product of the likelihood and an arbitrary constant (1,500). The peak is seen at and .L(r,g) r p 80 g p 750

recurrent mutation is frequent, we may overestimate the
average rate of gene conversion in our data. CpG sites
have roughly tenfold higher mutation rate than do other
sites and thus have a high chance of being subject to
recurrent mutations (Templeton et al. 2000). Conse-
quently, to explore whether recurrent mutation events
might be influencing our estimates, we removed the
5,696 SNPs in the data that occur in CpG sites and
recalculated and . We found that the change inp(a) p(b)
the observed values of our summaries was insignificant
(new and new , respec-p(a) p 0.0044 p(b) p 0.0112
tively). Thus, CpG sites do not seem to be inflating our
estimates of gene-conversion rate, which suggests that
recurrent mutation is not a major explanation for the
pattern of LD on chromosome 21.

Discussion

We have shown that a model with uniform crossing over
alone is not compatible with the overall short-range data
from chromosome 21. In addition, some plausible mod-
els of nonuniform crossing over or population growth
alone cannot explain our data. A more realistic model
of genetic exchange that includes both gene conversion
and crossing over fits our data much better than do
models with crossing over alone. We estimate a sub-
stantial amount of gene conversion on chromosome 21.
Our estimates do not appear to be inflated by either
recurrent mutations at CpG sites or the presence of popu-
lation structure alone. In short, it seems that gene con-
version is necessary to explain our data.

Although both crossing over and gene conversion
cause the decay of pairwise LD, the effects on multiple
loci is likely to be different. A single gene-conversion
event can create the equivalent of two crossing-over

events, with respect to the middle SNP in a triplet. In
contrast to two crossing-over events, a gene-conversion
event of this type does not affect the association between
the two outer SNPs. Therefore, the outer SNPs can still
be strongly associated with each other even if both are
unassociated with the middle SNP. When we consider
four loci, every crossing-over event that happens be-
tween the inner SNPs is also a crossing-over event be-
tween the outer SNPs, whereas this is not always true
for gene conversion with short tracts (mean length !1
kb). Thus, is more sensitive to crossing over thanp(b)
to gene conversion with short tracts. These differential
effects on multilocus summaries can help us to distin-
guish between these two mechanisms of recombination.

The triplet patterns that we describe are robust es-
timators of the gene-conversion rate. Compared with
other summaries (e.g., the fraction of incompatible SNP
pairs), they are less sensitive to changes in crossing-over
rates. If gene conversion follows the model of Wiehe et
al. (2000) (i.e., conversion events never affect more than
one SNP, either because tracts are short or because SNPs
are sparse), our four-locus summaries can be modified
into a robust estimator of crossing-over rate from short-
range data (0–5 kb). We call these patterns of type c.
Consider four loci A, B, C, and D, located in that order
on the chromosome. We define SNPs to be in pattern c
if: A and B are compatible, B and C are incompatible,
C and D are compatible, and A and D are incompatible.
Note that this pattern can arise from a single crossing-
over event between B and C, whereas it requires two
gene-conversion or recurrent mutation events. In ad-
dition, unlike gene-conversion or recurrent mutation
events, a single crossing-over event of this type does not
affect the association between A and B or between C
and D.
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Figure 6 The MLEs of gene conversion ( ) and crossing over ( ) for overlapping 2-Mb windows along chromosome 21. The X-axisˆ ˆg r

denotes the location corresponding to the center of the 2-Mb windows, and the error bars indicate ∼95% credible intervals. The horizontal
line denotes the chromosomal average of the parameters.

Compared with the composite-likelihood method of
Hudson (used by Frisse et al. [2001]), our rejection
method appears to be better at estimating the gene-con-
version rate and worse at estimating the crossing-over
rate. An interesting question for the future is whether
it might be possible to improve our estimates of crossing
over by adding additional summary statistics. This will
be necessary for addressing questions concerning varia-
tion in the ratio of gene-conversion rate to crossing-

over rate (i.e., f) across the genome. Our main goal here
was to construct an estimator of gene conversion that
was robust to variation in the crossing-over rates. To
explore the relationship between these two processes,
accurate estimates of both will be needed.

Gene-conversion rates have been estimated from ex-
periments in some eukaryotes. For example, typical val-
ues of f in yeast and fruit flies are close to 2 and 4,
respectively. Conversion tracts are estimated to be in the
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range of 350–2,000 bp in these organisms. Not much
experimental data is available for humans, except from
a few individual loci. Single-sperm analysis of the HLA-
DPB1 locus seems to support very short conversion tract
lengths of ∼54–132 bp and very high gene-conversion
rates relative to crossing-over rates ( ) (Zangenbergf 1 20
et al. 1995). Recent experiments by Jeffreys and May
(2004) identified highly localized gene-conversion ac-
tivity (hotspots) in some crossing-over hotspots in hu-
mans. Their study suggests that the mean length of tracts
associated with crossing-over is ∼460 bp and gene-con-
version tracts are in the range of 55–290 bp. Jeffreys
and May estimate f in the DNA3 hotspot to be ∼2.7,
but they point out that this may be an underestimate,
since tract lengths affect the proportion of conversion
events that are experimentally detectable. For our data
set, the highest likelihood was observed at forf p 1.6
a mean tract length of 500 bp. Decreasing the mean
tract length to 50 bp greatly increases our estimates of
g and f (9.4).

We did not explicitly distinguish recurrent mutations
from gene conversion in our analysis. Although most
SNPs are thought to arise from unique mutational events,
CpG dinucleotides and repetitive elements in the human
genome are believed to be highly mutable and can there-
fore mutate more than once at the same position (Tem-
pleton et al. 2000). The SNPs in chromosome 21 were
obtained after masking large amounts of repetitive DNA.
In addition to this, excluding SNPs that occurred in
CpG sites did not alter our summaries substantially.
Nevertheless, there is a chance that certain unknown
sequence motifs in DNA are subject to mutations at a
rate much higher than the average. If conversion tracts
happen to be considerably longer than the average spac-
ing between markers, there are four-locus patterns that
can serve as robust estimators of gene conversion in the
presence of recurrent mutations. We refer to these as
patterns of type d. Consider four loci A, B, C, and D,
located in that order on the chromosome. SNPs are
defined to be in pattern d when: A and B are incom-
patible, B and C are compatible, C and D are incom-
patible, and A and D are compatible. Note that this
pattern can arise from a single gene-conversion event
that affects both B and C but will require two crossing-
over or recurrent-mutation events. Unlike recurrent-mu-
tation or crossing-over events, a gene-conversion event
of this type will not affect the association between A
and D or B and C. On the other hand, distinguishing
between recurrent mutations and gene conversion with
very short tracts seems to be a more difficult problem
and will be the topic of future work.

Several recent studies have suggested that LD in the
human genome has a “blocklike” structure (e.g., Patil
et al. 2001). Haplotype blocks are defined as a series
of consecutive SNPs that are in complete or near com-

plete LD with one another. It has generally been as-
sumed that the presence of haplotype blocks provides
evidence of fine-scale variations in crossing-over rates,
with blocks corresponding to regions of reduced crossing-
over rates and interblock regions corresponding to hot-
spots of crossing over. The usefulness of this concept in
association studies will be more limited if regions with
reduced crossing over in the genome can still have high
levels of gene conversion. For example, the haplotype
block study of Wall and Pritchard (2003) examined sev-
eral data sets in humans and found that higher-than-
expected recombination over short distances within
blocks was consistent with the gene-conversion hypoth-
esis. If gene-conversion rates are also highly variable
across the human genome (as the experiments of Jeffreys
and May [2004] suggest), the efficacy of future associa-
tion studies will depend on local patterns of both crossing
over and gene conversion.
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